Sustainable Management of an Hake–Anchovy Peruvian Ecosystem Model by Viability Methods

Eladio Ocaña 1, Michel De Lara2, Ricardo Oliveros–Ramos 3 and Jorge Tam 3

March 3, 2009

1IMCA-FC, Universidad Nacional de Ingeniería, Lima–Perú
2CERMICS, Université Paris-Est, France
3Instituto del Mar del Perú, Centro de Investigaciones en Modelado Oceanográfico y Biológico Pesquero (CIMOBP), Callao–Perú
Figure: Comparison of observed and simulated biomasses of anchovy and hake using a Lotka–Volterra model with density-dependence in the prey. Model parameters are $R = 2.24$, $L = 0.98$, $\kappa = 64672 \times 10^3$ t ($K = 35800 \times 10^3$ t), $\alpha = 1.230 \times 10^{-6} \; t^{-1}$, $\beta = 4.326 \times 10^{-8} \; t^{-1}$.
Conservation and catch thresholds

<table>
<thead>
<tr>
<th></th>
<th>Anchovy (prey, y)</th>
<th>Hake (predator, z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimal biomass</td>
<td>7 000 kt</td>
<td>200 kt</td>
</tr>
<tr>
<td>minimal catch</td>
<td>2 000 kt</td>
<td>5 kt</td>
</tr>
</tbody>
</table>

These annual objectives were theoretically jointly achievable but...
Conservation and catch thresholds

<table>
<thead>
<tr>
<th></th>
<th>Anchovy (prey, (y))</th>
<th>Hake (predator, (z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimal biomass</td>
<td>7 000 kt</td>
<td>200 kt</td>
</tr>
<tr>
<td>minimal catch</td>
<td>2 000 kt</td>
<td>5 kt</td>
</tr>
</tbody>
</table>

These annual objectives were theoretically jointly achievable but...
Conservation and catch thresholds

<table>
<thead>
<tr>
<th></th>
<th>Anchovy (prey, y)</th>
<th>Hake (predator, z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimal biomass</td>
<td>7 000 kt</td>
<td>200 kt</td>
</tr>
<tr>
<td>minimal catch</td>
<td>2 000 kt</td>
<td>5 kt</td>
</tr>
</tbody>
</table>

These annual objectives were theoretically jointly achievable but...
Lotka–Volterra Model With Density–Dependence

\[
\begin{align*}
 y(t + 1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right), \\
 z(t + 1) &= z(t) \left(L + \beta y(t) - v(t) \right),
\end{align*}
\]

- state vector \((y, z)\) represents biomasses,
 - \(y\) prey biomass: anchovy
 - \(z\) predator biomass: hake
- control vector \((v, w)\) is fishing effort of each species,
- catches are \(vy\) and \(wz\) (measured in biomass),
- \(R_y\) and \(R_z\) are annual growth rates.
The Lotka–Volterra Model With Density–Dependence is given by the following equations:

\[
\begin{align*}
y(t + 1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right), \\
z(t + 1) &= z(t) \left(L + \beta y(t) - v(t) \right),
\end{align*}
\]

- The state vector \((y, z)\) represents biomass,
 - \(y\) prey biomass: anchovy
 - \(z\) predator biomass: hake

- The control vector \((v, w)\) is fishing effort of each species,
- Catches are \(vy\) and \(wz\) (measured in biomass),
- \(R_y\) and \(R_z\) are annual growth rates.
Lotka–Volterra Model With Density–Dependence

\[
\begin{cases}
 y(t+1) = y(t) (R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t)) , \\
 z(t+1) = z(t) (L + \beta y(t) - v(t)) ,
\end{cases}
\]

- state vector \((y, z)\) represents biomasses,
 - \(y\) prey biomass: anchovy
 - \(z\) predator biomass: hake
- control vector \((v, w)\) is fishing effort of each species,
 - catches are \(vy\) and \(wz\) (measured in biomass),
 - \(R_y\) and \(R_z\) are annual growth rates.
Lotka–Volterra Model With Density–Dependence

\[
\begin{align*}
 y(t+1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right), \\
 z(t+1) &= z(t) \left(L + \beta y(t) - v(t) \right),
\end{align*}
\]

- state vector \((y, z)\) represents biomasses,
 - \(y\) prey biomass: anchovy
 - \(z\) predator biomass: hake

- control vector \((v, w)\) is fishing effort of each species,
- catches are \(vy\) and \(wz\) (measured in biomass),
- \(R_y\) and \(R_z\) are annual growth rates.
Lotka–Volterra Model With Density–Dependence

\[
\begin{align*}
 y(t + 1) &= y(t) \left(R - \frac{R}{\kappa} y(t) - \alpha z(t) - v(t) \right), \\
 z(t + 1) &= z(t) \left(L + \beta y(t) - v(t) \right),
\end{align*}
\]

- state vector \((y, z)\) represents **biomasses**,
 - \(y\) prey biomass: anchovy
 - \(z\) predator biomass: hake
- control vector \((v, w)\) is **fishing effort** of each species,
- catches are \(vy\) and \(wz\) (measured in biomass),
- \(R_y\) and \(R_z\) are **annual growth rates**.
The **viability kernel** is the set of initial states \((y(t_0), z(t_0))\) from which can emerge a trajectory \((y(t), z(t))\), \(t = t_0, t_0 + 1, \ldots\) driven by appropriate controls \((v(t), w(t))\), \(t = t_0, t_0 + 1, \ldots\) such that the following goals are satisfied

- **preservation** (minimal biomass thresholds)

\[
y(t) \geq y^b, \quad z(t) \geq z^b
\]

- and **conservation** requirements (minimal catch thresholds)

\[
v(t)y(t) \geq Y^b, \quad w(t)z(t) \geq Z^b.
\]
The viability kernel is the set of initial states \((y(t_0), z(t_0))\) from which can emerge a trajectory \((y(t), z(t))\), \(t = t_0, t_0 + 1, \ldots\) driven by appropriate controls \((v(t), w(t))\), \(t = t_0, t_0 + 1, \ldots\) such that the following goals are satisfied

- preservation (minimal biomass thresholds)

\[
y(t) \geq y^b, \quad z(t) \geq z^b
\]

- and conservation requirements (minimal catch thresholds)

\[
v(t)y(t) \geq Y^b, \quad w(t)z(t) \geq Z^b.
\]
The **viability kernel** is the set of initial states \((y(t_0), z(t_0))\) from which can emerge a trajectory \((y(t), z(t))\), \(t = t_0, t_0 + 1, \ldots\) driven by appropriate controls \((v(t), w(t))\), \(t = t_0, t_0 + 1, \ldots\) such that the following goals are satisfied

- **preservation** (minimal biomass thresholds)
 \[
 y(t) \geq y^b, \quad z(t) \geq z^b
 \]

- and **conservation requirements** (minimal catch thresholds)
 \[
 v(t)y(t) \geq Y^b, \quad w(t)z(t) \geq Z^b.
 \]
The viability kernel is the set of initial states \((y(t_0), z(t_0))\) from which can emerge a trajectory \((y(t), z(t))\), \(t = t_0, t_0 + 1, \ldots\) driven by appropriate controls \((v(t), w(t))\), \(t = t_0, t_0 + 1, \ldots\) such that the following goals are satisfied

- **preservation** (minimal biomass thresholds)
 \[
 y(t) \geq y^b, \quad z(t) \geq z^b
 \]

- **and conservation requirements** (minimal catch thresholds)
 \[
 v(t)y(t) \geq Y^b, \quad w(t)z(t) \geq Z^b.
 \]
The **viability kernel** is the set of initial states \((y(t_0), z(t_0))\) from which *can* emerge a trajectory \((y(t), z(t))\), \(t = t_0, t_0 + 1, \ldots\) driven by appropriate controls \((v(t), w(t))\), \(t = t_0, t_0 + 1, \ldots\) such that the following goals are satisfied:

- **preservation** (minimal biomass thresholds)
 \[
 y(t) \geq y^b, \quad z(t) \geq z^b
 \]

- and **conservation** requirements (minimal catch thresholds)
 \[
 v(t)y(t) \geq Y^b, \quad w(t)z(t) \geq Z^b.
 \]
The viability kernel is the set of initial states \((y(t_0), z(t_0))\) from which can emerge a trajectory \((y(t), z(t))\), \(t = t_0, t_0 + 1, \ldots\) driven by appropriate controls \((v(t), w(t))\), \(t = t_0, t_0 + 1, \ldots\) such that the following goals are satisfied

- **preservation** (minimal biomass thresholds)
 \[
 y(t) \geq y^b, \quad z(t) \geq z^b
 \]

- and **conservation** requirements (minimal catch thresholds)
 \[
 v(t)y(t) \geq Y^b, \quad w(t)z(t) \geq Z^b.
 \]
Figure: The state constraint set is the large set. It includes the smaller viability kernel.
Explicit expression for the viability kernel

Proposition

- If the growth rates are decreasing in the fishing effort
- and if the thresholds are such that the following growth rates are greater than one

\[R_y(y^b, z^b, \frac{Y^b}{y^b}) \geq 1 \quad \text{and} \quad R_z(y^b, z^b, \frac{Z^b}{z^b}) \geq 1, \]

the viability kernel is given by

\[\{(y, z) \mid y \geq y^b, \quad z \geq z^b, \quad yR_y(y, z, \frac{Y^b}{y}) \geq y^b, \quad zR_z(y, z, \frac{Z^b}{z}) \geq z^b\}. \]
Explicit expression for the viability kernel

Proposition

- **If the growth rates are decreasing in the fishing effort**
- **and if the thresholds are such that the following growth rates are greater than one**

\[
R_y(y^b, z^b, \frac{Y^b}{y^b}) \geq 1 \text{ and } R_z(y^b, z^b, \frac{Z^b}{z^b}) \geq 1,
\]

the viability kernel is given by

\[
\left\{ (y, z) \mid y \geq y^b, z \geq z^b, yR_y(y, z, \frac{Y^b}{y}) \geq y^b, zR_z(y, z, \frac{Z^b}{z}) \geq z^b \right\}.
\]
Explicit expression for the viability kernel

Proposition

- If the *growth rates* are decreasing in the fishing effort
- and if the *thresholds* are such that the following *growth rates* are greater than one

\[
R_y(y^b, z^b, \frac{Y^b}{y^b}) \geq 1 \text{ and } R_z(y^b, z^b, \frac{Z^b}{z^b}) \geq 1,
\]

the *viability kernel* is given by

\[
\left\{ (y, z) \mid y \geq y^b, z \geq z^b, yR_y(y, z, \frac{Y^b}{y}) \geq y^b, zR_z(y, z, \frac{Z^b}{z}) \geq z^b \right\}.
\]
Adjusting Catches to Prominent Biomass Conservation Thresholds

1. Considering that first are given minimal biomass conservation thresholds

\[y^b \geq 0, \quad z^b \geq 0 \]

2. the following catches levels are susceptible to be sustainably maintained:

\[
\begin{align*}
Y^{b,*} & := y^b \max \{ v \geq 0 \mid R_y(y^b, z^b, v) \geq 1 \} \\
Z^{b,*} & := z^b \max \{ w \geq 0 \mid R_z(y^b, z^b, w) \geq 1 \}
\end{align*}
\]
1. Considering that first are given minimal biomass conservation thresholds

\[y^b \geq 0, \quad z^b \geq 0 \]

2. the following catches levels are susceptible to be sustainably maintained:

\[
\begin{align*}
Y^{b,*} & := y^b \max\{v \geq 0 \mid R_y(y^b, z^b, v) \geq 1\} \\
Z^{b,*} & := z^b \max\{w \geq 0 \mid R_z(y^b, z^b, w) \geq 1\}
\end{align*}
\]
Considering that first are given minimal biomass conservation thresholds

\[y^b \geq 0 , \quad z^b \geq 0 \]

the following catches levels are susceptible to be sustainably maintained:

\[
\begin{align*}
Y^{b,*} &:= y^b \max\{ v \geq 0 \mid R_y(y^b, z^b, v) \geq 1 \} \\
Z^{b,*} &:= z^b \max\{ w \geq 0 \mid R_z(y^b, z^b, w) \geq 1 \}
\end{align*}
\]
Hake–anchovy Peruvian fishery: official quotas and sustainable quotas given by the viability approach

<table>
<thead>
<tr>
<th></th>
<th>Sustainable quotas (kt)</th>
<th>Official quotas (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Anchovy</td>
<td>5 152</td>
<td>5 399</td>
</tr>
<tr>
<td>Hake</td>
<td>49</td>
<td>56,8</td>
</tr>
</tbody>
</table>

E. Ocaña, M. De Lara, R. Oliveros–Ramos and J. Tam
PSI, Tahiti, 02-06 March 2009
<table>
<thead>
<tr>
<th>Fish</th>
<th>Sustainable quotas (kt)</th>
<th>Official quotas (kt)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>2006</td>
</tr>
<tr>
<td>Anchovy</td>
<td>5 152</td>
<td>5 399</td>
<td>4 250</td>
</tr>
<tr>
<td>Hake</td>
<td>49</td>
<td>56,8</td>
<td>55</td>
</tr>
</tbody>
</table>
Contribution to quantitative sustainable management

- Conceptual framework for quantitative sustainable management
- Contribution to avoid confusion between
 - operational objectives (advice)
 - perpetual objectives (not explicitly stated)
- Managing ecological and economic conflicting objectives
- Sustainable quotas
- Risk and sustainable management
Contribution to quantitative sustainable management

- **Conceptual framework for quantitative sustainable management**
- Contribution to avoid confusion between
 - operational objectives (advice)
 - perpetual objectives (not explicitly stated)
- Managing ecological and economic **conflicting objectives**
- Sustainable quotas
- Risk and sustainable management
Contribution to quantitative sustainable management

- Conceptual framework for quantitative sustainable management
- Contribution to avoid confusion between:
 - operational objectives (advice)
 - perpetual objectives (not explicitly stated)
- Managing ecological and economic conflicting objectives
- Sustainable quotas
- Risk and sustainable management
Contribution to quantitative sustainable management

- Conceptual framework for quantitative sustainable management
- Contribution to avoid confusion between
 - operational objectives (advice)
 - perpetual objectives (not explicitly stated)
- Managing ecological and economic conflicting objectives
- Sustainable quotas
- Risk and sustainable management
Contribution to quantitative sustainable management

- Conceptual framework for quantitative sustainable management
- Contribution to avoid confusion between operational objectives (advice) and perpetual objectives (not explicitly stated)
- Managing ecological and economic conflicting objectives
- Sustainable quotas
- Risk and sustainable management
Contribution to quantitative sustainable management

- Conceptual framework for quantitative sustainable management
- Contribution to avoid confusion between
 - operational objectives (advice)
 - perpetual objectives (not explicitly stated)
- Managing ecological and economic conflicting objectives
- Sustainable quotas
- Risk and sustainable management
ACI Écologie quantitative MOOREA (Méthodes et outils d’optimisation pour la recherche en écologie appliquée)

MIFIMA (Mathematics, Informatics and Fisheries Management) international research network of biologists, economists and mathematicians: we thank CNRS, INRIA and the French Ministry of Foreign Affairs for their funding and support through the regional cooperation program STIC–AmSud.

ACI Écologie quantitative MOOREA (*Méthodes et outils d’optimisation pour la recherche en écologie appliquée*)

MIFIMA (Mathematics, Informatics and Fisheries Management) international research network of biologists, economists and mathematicians: we thank CNRS, INRIA and the French Ministry of Foreign Affairs for their funding and support through the regional cooperation program STIC–AmSud.

ACI Écologie quantitative MOOREA (*Méthodes et outils d’optimisation pour la recherche en écologie appliquée*)

MIFIMA (*Mathematics, Informatics and Fisheries Management*) international research network of biologists, economists and mathematicians: we thank CNRS, INRIA and the French Ministry of Foreign Affairs for their funding and support through the regional cooperation program STIC–AmSud.

ACI Écologie quantitative MOOREA (*Méthodes et outils d’optimisation pour la recherche en écologie appliquée*)

MIFIMA (Mathematics, Informatics and Fisheries Management) international research network of biologists, economists and mathematicians: we thank CNRS, INRIA and the French Ministry of Foreign Affairs for their funding and support through the regional cooperation program STIC–AmSud.