PSI2009/407
Changes in the Oceanic Carbonate System due to Anthropogenic and Natural Changes

Mareva Chanson-Kuchinkea, Frank Millerob, Rik Whanninkhofb, Richard Feelyc, Christopher Sabinec and Andrew Dicksond
aUniversity of Miami - Rosenstiel School of Marine and Atmospheric Sciences, 4600 Rickenbacker causeway, 33149 Miami, United States of America
bAtlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, 33149 Miami, United States of America
cPacific Marine Environmental Laboratory, 7600 Sand Point Way NE, 98115 Seattle, United States of America
dUniversity of California - Scripps Institution of Oceanography, 9500 Gilman Drive, 92093-0244 LaJolla, United States of America
mchanson@rsmas.miami.edu

Total dissolved inorganic CO\textsubscript{2} (TCO\textsubscript{2}), total alkalinity (TA), pH and partial pressure of CO\textsubscript{2} (pCO\textsubscript{2}) are the four parameters that are used to study the oceanic carbonate system. The World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS) Hydrographic Program in the 1990s and the CLIVAR/CO\textsubscript{2} Repeat Hydrography Program in the 2000s provide data that are used to examine the effect of changing CO\textsubscript{2} levels in the oceans. The results from these studies are used to quantify the effects of the uptake of anthropogenic CO\textsubscript{2} on the chemistry of the oceans. In addition, CO\textsubscript{2} levels in the ocean are affected by the distribution of water masses, by primary production and by the oxidation of organic matter. To elucidate these effects, we chose to identify the water masses using an optimum multi parameter analysis (OMP). This allows us to attribute the changes in the distribution due to the different factors. In this paper, transects in the Atlantic (A16), Pacific (P16) and Indian (I9) oceans are used to show how the pH of ocean waters is decreasing in different water masses. The decreasing pH results in shoaling of the aragonite saturation horizon. Changes observed in the thermocline are affected by oxidation of organic carbon and the dissolution of anthropogenic CO\textsubscript{2}.

Number of words in abstract: 212
Keywords: ocean acidification - anthropogenic CO\textsubscript{2} - water mass mixing
Technical area: Climate Change and Ocean Acidification
Special session: Not specified
Presentation: Oral preferred, but poster accepted
Special equipment: No special equipment