Population genetic study of variants of genes conferring resistance to severe dengue disease
Flaviviridae

<table>
<thead>
<tr>
<th>Virus</th>
<th>Serocomplex</th>
<th>Clade</th>
<th>Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Nile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunjin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murray Valley encephalitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St Louis encephalitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow fever</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central European encephalitis</td>
<td>Tick-borne encephalitis</td>
<td>IV</td>
<td>Tick-borne</td>
</tr>
<tr>
<td>Far Eastern encephalitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powassan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dakar bat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clade numbers and clusters indicated in the diagram.
Manifestations of the dengue syndrome

Dengue virus infection

- Asymptomatic
 - Fever
 - Undifferentiated Fever UF
 - Symptomatic
 + Hemorrhagic tendency
 - Plasma leakage
 - Dengue fever Syndrome DF
 - Dengue hemorrhagic fever DHF
 + Dengue shock Syndrome DSS

Symptom severity

Rare manifestations: Encephalitis, Hepatitis
Emergence of Dengue Disease World-wide

Countries reported DF/DHF

<1960: ▼

>1960: ▲
World wide dengue disease severity difference
A complex interplay between human-virus-vector and environment
Evidence of human genetic factors in severity of dengue disease

Dengue viruses cause clinical manifestations in only a small percentage of infected individuals

- Caucasian > African/ Chinese > Malasian
- HLA-A and B association study
- Others studies
 - FCGR IIA
 - TNFα
Early innate immune recognition of dengue virus
Immature DCs that express the C-lectin DC-SIGN support DEN virus replication

DEN virus-infected MDDC^{DC-SIGN+} (IF assay using anti-DEN Abs)

Patients

Inclusion criteria

Dengue cases

Fever + hemorrhagic tendency: eg petechii or rashes or hepatomegaly

+ serological diagnosis: paired serum

Evidence of plasma leakage

democoncentration or pleural effusion

DF Group

DHF/DSS Group

Age 5-15 year-old

Control Group

blood donors from the same ethnic background
DC-SIGN-336 association study

Frequency of DC-SIGN-336 genotype G/G and G/A

<table>
<thead>
<tr>
<th>Location</th>
<th>Controls</th>
<th>DF</th>
<th>DHF/DSS</th>
<th>OR</th>
<th>(95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rama</td>
<td>296</td>
<td>52</td>
<td>183</td>
<td>14.31</td>
<td>(3.34-61.23)</td>
<td>2.3 x10^-4</td>
</tr>
<tr>
<td>Siriraj</td>
<td>216</td>
<td>73</td>
<td>168</td>
<td>3.79</td>
<td>(1.62-8.87)</td>
<td>0.0024</td>
</tr>
<tr>
<td>Khonkaen</td>
<td>184</td>
<td>27</td>
<td>103</td>
<td>99.75</td>
<td>(12.70-783.54)</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Sakuntabhai, et al.
Nat Genet 2005
The A to G change in -336 affects the promoter activity of [-472;-1]CD209 in human myeloid cells.

P. Despres
DEN virus infection correlates with the level of DC-SIGN expression

(Lozach et al., J.Biol.Chem. 280: 23698, 2005)
Allelic distribution of DC-SIGN-336G in different populations

% RARE MILD/MODERATE MOST SEVERE

Zimbabwean Sub-saharan African South African Coloured Caucasian Canadian Caucasian European Thai Asian

DC-SIGN-336G -DF protective allele

Boily-Larouche et al. 2007
Gene encoding the 1b isoform of 2’-5’ Oligo adenylate synthetase

Sensitive strains

Resistant strains

Genetic susceptibility to West Nile (WN) virus in the mouse model

Mashimo et al., PNAS 2003
The IFN-inducible OAS/RNase L system is involved in the innate antiviral immunity to RNA viruses.
Cluster of genes encoding mouse 2'-5' Oas proteins

Mouse Oas gene cluster

RPCI-23-39M18

Cen. 30 Kbp Tel.

Dtx1

Oas2
(Oasl11)

Oas3
(Oasl10)

Iap

Oas1e Oas1c Oas1b

Oas1f Oas1h Oas1g Oas1a Oas1d

Rph3a

8 tandemly arranged transcription units for Oas1

Human OAS gene cluster

(http://genome.ucsc.edu)
OAS3-S381R vs DEN severity

Control
- CC: 506
- CG: 176
- GG: 12

DF
- CC: 174
- CG: 72
- GG: 6

DHF
- CC: 323
- CG: 128
- GG: 7

DSS
- CC: 121
- CG: 24
- GG: 2

Graphs by finaldx4
Allelic distribution of OAS3-S381R-G in different populations

Thai

Caucasian

East Asian

African

www.hapmap.org
Summary:

Genetic study of human response to infection

- Help understanding human-pathogen interaction

- Direct benefit: to identify a person susceptible to severe infection >> prevention and early treatment

- Identify new drug target or new treatment strategy

- Less social impact than mutations of genetic diseases or chronic diseases
Perspectives

- World wide scale clinical/viral/environmental/genetics study
- Genome scan association study
World wide scale
clinical/environmental/genetics study of
Arboviruses
Collaborators

Mahidol University, Bangkok, Thailand:
Faculty of Medicine Ramathibodi Hospital,
A. Chuansumrit
T. Lowhnoo
K. Tangnararatchakit
W. Chaiyaratana

Faculty of Medicine Siriraj Hospital,
Medical Biotechnology Unit, **BIOTEC**
S.M. Kalayanarooj
N. Tangthawornchaikul
P. Yenchitsomanus,
P. Suriyaphol,
P. Avirutnan
K. Chokephaibulkit
P. Malasit

Center for Vaccine Development,
Institute of Science and Technology for Research and Development.
S. Yoksan

Khon Kaen Hospital,
Ministry of Public Health, Thailand.
S. Vasanawathana,

Center for Genomic Medicine, Kyoto University
F. Matsuda

Centre National de Génotypage, Evry, France
M. Lathrop

Institut Pasteur, Paris, France:
Génétique des Maladies Infectieuses et Autoimmunes,
C. Turbpaiboon,
I. Casadémont,
C. Julier,

Interactions Moléculaires Flavivirus-Hôtes,
A. Kajaste Rudnitski,
C. Dejean de la Bâtie
A-C. Brehin
P. Després

Génétique, Papillomavirus et Cancer Humain
Y. Jacob

“The Thailand SNP discovery program”
BIOTEC, National Science and Technology Development Agency NSTDA, Thailand